Intraseasonal to Interannual hydrologic forecasting for Mexico: new products and forecasts and their potential uses

Andrea J. Ray, NOAA/Earth Systems Research Lab(ESRL)

(formerly "CDC") Boulder, CO, USA Dennis P. Lettenmaier, Univ of Washington Rene Lobato S., IMTA

with thanks to:

Miguel Cortez & Alejandro Gonzalez, SMN Chunmei Zhu & Andrew W. Wood, UW

North American Drought Monitor Meeting D.F., Mexico 18 October, 2006

Announcement:

Union Geofisica Mexicana/American Geophysical Union Joint Assembly: Acapulco, week of 25 May 07

- Session proposed: Human Dimensions of Climate Variations in the Americas
- Session will focus on the interaction of climate and society across a range of time scales, and what is known about adaptation and reduction of vulnerability to climate from these studies.
- Invited talks from authors of the IPCC chapters on Impacts, Adaptation, and Vulnerability, and two other important arenas of climate and society interactions: applications of research on the North American Monsoon and the development of the North American Drought Monitor.
- We invite submission of papers and posters on:
 - human dimensions of climate change and variability across the Americas;
 - societal processes related to drought, especially the trans-boundary societal impacts of drought;
 - the interaction of the North American Monsoon System and society; and
 - studies of applications of atmospheric and hydroclimatologic research to societal problems across a range of time scales.

Please inform your colleagues!! Questions?? Andrea.Ray@noaa.gov

Overview

- Hydrologic forecasting for the North American Monsoon System (NAMS) region – extension of the University of Washington "Westwide Forecast System"
 - Summary of the UW system for the U.S.
 - Surface water monitor, also being implemented for Mexico
 - New 1/8 degree gridded dataset for surface hydrology and energy flux data for Mexico, 1925-2004

Summary of hydrologic predictions project for

Mexico, focus on Rio Yaqui

US "Westwide" hydrologic forecast system objectives

- Demonstrate/evaluate the utility of a regional approach to seasonal streamflow forecasting
- Evaluate the potential to integrate climate forecasts into seasonal (two week to one year) lead streamflow forecasts over the western U.S.
- Evaluate the potential to integrate research advances (including alternative data sources, e.g., remote sensing, and data assimilation) into operational seasonal streamflow forecasting, "testbed" concept

Forecast System Overview

http://www.hydro.washington.edu/Lettenmaier/Projects/fcst

Forecast System Schematic

^{*} experimental, not yet in real-time product

Modeling Framework

Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model

Forecast points and sample streamflow forecasts

targeted statistics e.g., runoff volumes

Forecast flow percent of average for 2004 APR-SEP avera at low, median and high percentiles

			unconditional		ENSO-Neut
#	NAME	0.1	0.5	0.9	0.5
1	MICAA	73	85	97	85
2	REVEL	73	85	98	85
3	ARROW	72	83	97	84

Westwide Forecast System – climate forecast drivers

VIC initial condition estimation:

SNOTEL assimilation

Problem

sparse station spin-up period incurs some systematic errors, but snow state estimation is critical

Solution

use SWE anomaly observations (from the 600+ station USDA/NRCS SNOTEL network and a dozen ASP stations in BC, Canada) to adjust snow state at the forecast start date

In Mexico, soil moisture is probably more important!!

Example of Forecast: May 1, 2006

Western US Streamflow Forecasts initiated MAY 1, 2006 Seasonal Volume (Fost Ensemble Average % of Average)

Wood & Lettenmaier, 2006, *A testbed for new seasonal hydrologic forecasting approaches...*, BAMS, in press; available at: http://www.hydro.washington.edu/under publications

Another new tool: UW Surface Water Monitor

- Produces nowcasts of drought/hydrologic conditions across continental US (CONUS)
 - domain to be extended to include Mexico
- Directly related to retrospective drought reconstruction
 Andreadis et al. ("Twentieth Century drought in the conterminous U.S., Jour Hydrometeology, Dec. 2005) and westwide forecast system
- Enabled by recent NOAA Nat'l Climatic Data Center (NCDC) extension of digital data archives back to 1915
 - places current droughts in historic context
- Forecasts that can be used in drought outlook type analysis
- Now used in US Drought Monitor development

http://www.hydro.washington.edu/forecast/Monitor

Monitor Webpage

daily updates

1-2 day lag

soil moisture & SWE percentiles

½ degree resolution

archive from 1915-current

uses ~2130 index stns

Example product: May 1, 2006

http://www.hydro.washington.edu/forecast/Monitor

Need for retrospective precipitation and land surface data sets to implement streamflow forecasting

Climatology (1925-2004)

Zhu, Lettenmaier et al, 2006,

Long-term climate and derived
surfaceclimatology...., J.Climate,
in press
available at:
http:/www.hydro.washington.edu/
under publications

Gridded Long-Term Land Surface Data Set Climatology (1925-2004)

- Surface forcing data: Daily precipitation, maximum and minimum temperatures
- SMN daily precipitation, surface air temperature data (pre-1940 - 2003) produced by SMN (Ing. Alejandro Gonzales S.) over 5000 stations.
- SMN daily precipitation data (1995 near realtime) provided courtesy of Miguel Cortez V.of SMN, around 1,000 stations.
- Quality controlled, weighted inverse square datset
- New gridded 1/8 degree dataset

Fraction of Area

Baseflow Curve

W_sW₂^c W₂̄^c Layer 2 Soil Moisture, W₂

Variable Infiltration Capacity (VIC)

NW Mexico NAME Event Raingage Network (NERN) precipitation daily data (2002 -) provided courtesy of David Gochis, 86 station cross Sierra Madre Occidental

Layer 2

Pan-Mexican index river basins:

Used to calibrate the dataset

Project to extend hydrologic forecast system to Mexico

- Grant from NOAA as part of the North American Monsoon Experiment (NAME), focus on Rio Yaqui basin, possible work on Rio Conchos
- Plan to transfer the forecast system to IMTA and make it available to other MX water agencies

Strategy for extension of forecast system over Mexico

- Implement seasonal streamflow prediction, extend domain to MX
 - Real-time precipitation from SMN (linked to index stations for climatology as in western U.S.)
 - Real-time surface air temperature and surface wind from EDAS (NOAA Eta Data Assimilation System)
 - Other downward fluxes (solar, longwave) and surface variables (vapor pressure deficit) derived from Tmin, Tmax
 - Surface air temperature climatology from NARR (North American Regional Reanalysis)
- Hydrologic predictability analysis
 - Evaluate methods for forecasting, e.g. monsoon precipitation, soil moisture
 - Zhu, Cavazos & Lettenmaier, 2006. Role of antecedent land surface conditions in warm season precipitation over NW Mex. J.Climate, in press, available at: http://www.hydro.washington.edu/ under publications

Rio Yaqui model adaptations

- Existing IMTA Fortran model represents major and smaller reservoirs, monthly time step, simulation for planning and operations decisions
- Implement model in "Power-Sim Studio 2003" programming language with some advantages over Fortran: provides graphic and other user interfaces
- Update model to allow it to use and evaluate utility of long lead streamflow forecasts
- Improve representation of reservoir operating rules and demands

Project for hydrologic forecasting for MX: Applications and iteration with users

- Applications and user feedback
 - Meet with CNA/D.F. and Obregon, others to assess current uses of weather/climate/streamflow products, needs and cultivate their interest in the project
 - Iterate with them to ensure that product suite is appropriate
 - Appropriate delivery, e.g. presentation of forecasts as graphs, maps, geo-spatial formats
- Enhancements to forecast system delivery
 - Ensemble streamflow prediction (ESP), PDO, ENSO, two climate models
 - Soil moisture probably more important in MX; snow is critical in western U.S.
 - Create a user-focused website (vs. research-focused)
- Evaluate system performance and forecast capabilities
- Transfer to IMTA and other MX water agencies as desired

Discussion

- New dataset and water monitor products intended to be useful by water management agencies and others
 - New gridded dataset intended for use in:
 - more realistic initial conditions for weather and climate forecasting;
 - climate change and trend analysis of simulated hydrologic variables;
 - model diagnostic studies;
 - evaluation of land-surface interactions in the monsoon region
 - US Surface Water Monitor results used in U.S. Drought Monitor
 - How can these products and forecasts be developed as a contribution for MX in MX side of NADM? e.g. surface water monitor, gridded datasets, streamflow outlooks

Andrea J. Ray, NOAA/ESRL

Andrea.Ray@noaa.gov

Open access to products from UW hydro group web site <u>www.hydro.washington.edu/forecasts</u>

New users welcome!

Extra slides

XX

Spatial Domain for Expanded West-wide Seasonal Hydrologic Forecast System

Climate forecast bias correction scheme

Expansion to multiple-model framework

SMN real-time precipitation availability

Reporting station number since Apr. 3rd, 2006

Reporting days over last 6 months

Ongoing work

- Improved data assimilation (snow cover extent, SNOTEL)
- 2-week forecasts
- Multi-model ensemble (hydrology and climate)
- Forecast domain expansion
- Augmented forecast products (e.g. nowcasts in real-time)

Scheme for drought recovery/persistence analysis (planned)

SW Monitor Information Flow

1930s 1955+

NOAA ACIS
Prep Tmax Tmin
Coop Stations

Index Station Method Gridded Forcing Creation

VIC Retrospective Simulation
Daily, 1915 to Near Current

Hydrologic State VIC Real-time Simulation (~1 month long) Hydrologic State (-1 Day)

Hydrologic values, anom's, %-iles w.r.t. retrospective **PDF**

climatology (PDF)
of
hydrologic values
w.r.t. defined period

vals, anoms %-iles

w.r.t. **PDF**

First focus area: Rio Yaqui basin

